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SUMMARY

For the incompressible Navier–Stokes equations, vorticity-based formulations have many attractive fea-
tures over primitive-variable velocity–pressure formulations. However, some features interfere with the
use of the numerical methods based on the vorticity formulations, one of them being the lack of a
boundary conditions on vorticity. In this paper, a novel approach is presented to solve the velocity–
vorticity integro-di�erential formulations. The general numerical method is based on standard �nite
volume scheme. The velocities needed at the vertexes of each control volume are calculated by a so-
called generalized Biot–Savart formula combined with a fast summation algorithm, which makes the
velocity boundary conditions implicitly satis�ed by maintaining the kinematic compatibility of the ve-
locity and vorticity �elds. The well-known fractional step approaches are used to solve the vorticity
transport equation. The paper describes in detail how we accurately impose no normal-�ow and no
tangential-�ow boundary conditions. We impose a no-�ux boundary condition on solid objects by the
introduction of a proper amount of vorticity at wall. The di�usion term in the transport equation is
treated implicitly using a conservative �nite update. The di�usive �uxes of vorticity into �ow domain
from solid boundaries are determined by an iterative process in order to satisfy the no tangential-�ow
boundary condition. As application examples, the impulsively started �ows through a �at plate and a
circular cylinder are computed using the method. The present results are compared with the analyti-
cal solution and other numerical results and show good agreement. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Vorticity plays an important role in �uid dynamics analysis and in many cases it is advan-
tageous to describe dynamics events in a �ow in terms of the evolution of the vorticity
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�eld [1]. Vorticity–velocity schemes have distinct advantages over velocity–pressure formu-
lations for solving the Navier–Stokes equations and have become one of most interesting
areas of research in computational �uid dynamics [2, 3]. All these schemes use the vorticity
transport equation to determine the vorticity but they di�er in the solution procedure for the ve-
locity �eld from the vorticity distribution. There are two separate types of approaches in the
solution procedure for the velocity �eld from the vorticity distribution. One is based on
the di�erential form of the Navier–Stokes equations, solving both the continuity equation and
the de�nition of vorticity [4, 5] or Poisson equation for the velocity based on the vorticity
[6–9]. The other is the so-called integral formulation [10–13], in which an integral equation
for calculating velocity explicitly from the vorticity is employed. The integral form is interest-
ing; �rst, in this formulation, only non-negligible vorticity region needs to be solved. Second,
it separates the velocity calculation from the vorticity redistribution, which allows an explicit,
point-to-point calculation of velocity, and the velocity boundary condition at in�nity is exactly
satis�ed. The most important point is that the integral formulation connects vorticity boundary
conditions with the instantaneous vorticity and velocity distributions in the �ow domain and
reduces the global vorticity constraints to boundary integral equation or even a local condition.
When the integral form is used to obtain the velocity �eld from the vorticity �eld, one

popular class of the methods to advance the solution of the space–time domain is the grid-
less Lagrangian methods, which are usually called Lagrangian vortex methods. In a vortex
method, the continuous vorticity �eld is represented by a number of overlapping vortex par-
ticles. These particles are then tracked in a Lagrangian manner as they follow the �uid �ow.
A Biot–Savart law is used to get the velocity �eld in terms of the vorticity and vortex par-
ticles participate a random walk [12], or core-spreading [14] to simulate viscous di�usion.
From a numerical point of view, the vortex methods have attractive features [14–16] and
they have been mainly used to simulate the unsteady �ows around the blu� bodies [17, 18].
On the other hand, there are some problems with the vortex methods. Lagrangian description
of the vortex particles’ movement may make the particle distribution become uneven and
destroy the overlapping conditions which necessitates a remeshing process [19]. The vorticity
boundary conditions are di�cult to deal with although some e�orts have been made [11, 20].
In this paper, an attempt is made to avoid some of the questions raised by using the gridless

Lagrangian methods. The general numerical method is based on standard �nite volume and
�nite di�erence techniques. Since vorticity is a conserved quantity in two dimensions, �nite
volume method is an appropriate scheme for vorticity transport equation while the velocity
needed at the vertexes of each control volume can be calculated by using the integral form
in conjunction with an adaptive fast summation algorithm. A key component of our work is
to describe in detail how we accurately deal with the vorticity boundary condition along the
no-slip boundary. To solve the vorticity transport equation, we split the convection term from
the di�usion term using a fractional step approach. During the convection step, we impose a
no-�ux boundary condition on solid objects and appropriate in�ow–out�ow conditions on the
computational domain. The di�usion term in the transport equation is treated implicitly, also
using a conservative �nite volume update. In each partial cell, the di�usive �uxes at partial
cell edges are computed accurately using bilinear interpolation. Vorticity is di�used into the
domain from solid boundaries and a no-�ux condition is imposed on the computational domain.
The inherent conservative property of the �nite volume method guarantees the conservation of
vorticity in the entire �ow. It is straightforward to extend the method to 3-D �ow problems,
although the question of vorticity divergence remains.
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FINITE VOLUME SOLUTION FOR VELOCITY–VORTICITY FORMULATION 609

The rest of the paper is organized as follows. Section 2 describes velocity–vorticity for-
mulations of the Navier–Stokes equation for general cases, including a Poisson equation of
the pressure based on velocity and vorticity. In Section 3, we present the integral form for
the velocity and pressure based on the vorticity, followed by a fast summation algorithm in
integral calculations. Section 4 provides a detailed description of the numerical implementa-
tion for the vorticity transport equation, especially the implementation of vorticity boundary
conditions. In Section 5, numerical results are presented and analysed. Some conclusions will
be given in Section 6.

2. GOVERNING EQUATIONS

The Navier–Stokes and continuity equation for the unsteady �ow �eld with uniform density
� and kinematic viscosity � and subject to negligible body forces are expressible in term of
the velocity u and the pressure p as

@u
@t
+ (u · ∇)u=−1

�
∇p+ �∇2u (1)

∇ · u=0 (2)

Instead of solving the Navier–Stokes equations in terms of primary variables as shown in
Equation (1), the vorticity-based methods usually seek the solution of the following equations:

@�
@t
+ (u · ∇)�=�∇2� (3)

∇2u=− ∇ ×� (4)

Here we assume that the �ow is two-dimensional. Equation (3) is employed to determine the
vorticity in the vorticity-based methods and Poisson Equation (4) is usually used to determine
the velocity from the vorticity, which can be obtained by taking the curl of vorticity de�nition
!=∇ × u and continuity equation ∇· u=0. Let the �ow domain be V and with boundary S.
The boundary conditions are

n× u= n× u(S); n · u= n · u(S) (5)

Hereafter, n is the unit normal vector on the boundary S pointing out of the �uid and u on
the boundary S is usually known beforehand. The boundary may consist of a solid surface B
and in�nite boundary S∞.
One advantage of the vorticity–velocity formulations over velocity–pressure formulations

is its elimination of the pressure variable. After the calculation of the velocity and vorticity
distribution, if necessary, we can obtain the pressure distribution according to the following
Poisson equation. By taking divergence of the Navier–Stokes equation and introducing a
Bernoulli-type variable H, a Poisson equation for body surface pressure can be obtained as

∇2H =∇ · (u×�) (6)
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where

H =
p
�
+
u2

2
(7)

as r→ ∞, assume H =p=� + U 2
∞=2→ const (for external �ow with uniform velocity

at in�nity).

3. INTEGRAL FORMULATIONS FOR VELOCITY AND PRESSURE

Both the Poisson Equations (4) and (6) can be solved in integral expressions in Green’s
function formulations. From Equation (4), the integral formulation to calculate the velocity
has been derived independently by several investigators including Wu and Thompson [10],
and Morino [21]. The integral presentation, which can be called generalized Biot–Savart for-
mulation is

u(r; t)=
1
2�

∫
V

�(r0)×R
R2

dV (r0) +
1
2�

∫
S

[u(r0)× n(r0)]×R − [u(r0) · n(r0)] ·R
R2

dS(r0) (8)

where R= |R|= |r − r0|, subscript ‘0’ indicates that the variables and the integrations are
performed in the r0 space. This equation shows that if the vorticity !(r0; t) is known and the
domain V is large enough to contain all the vorticity generated at the solid boundary prior to
time t, the velocity distribution in the �ow �eld can be evaluated directly. In Equation (8),
the second integral can be reexpressed considering the uniform �ow condition in in�nite
boundary S∞

u(r; t) =
1
2�

∫
V

�(r0)×R
R2

dV (r0)

+
1
2�

∫
B

[u(r0)× n(r0)]×R − [u(r0) · n(r0)] ·R
R2

dB(r0) +U∞ (9)

Equation (9) is valid only for certain kinematically admissible interior vorticity �eld,
!, and velocity boundary conditions written as Equation (5). For example, assume that
Equation (9) is satis�ed at a given time t, and consider an explicit time integration of vorticity
equation (3). After the vorticity �eld has been transported but without properly taking into
account the production and transport of vorticity at the boundary, Equation (9) is no longer
generally satis�ed; however, we can use this equation to link the vorticity existing in the �ow
domain with the vorticity creation on the boundary as shown in the following part.
The Green’s function solution of Equation (6) is

∫
V
H∇2G dV +

∫
H
H∇G · n dS=

∫
B
∇H · nG dS +

∫
V

∇G · (u×�) dV (10)
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where G is G = 1=(2�) ln(1=R); R= |R|= |r− r0| for two-dimensional �ows. Taking the inner
product of the Navier–Stokes equation with n, yields an expression of ∇H · n as

∇H · n= n ·
(

−@u
@t
+ u · �+ �∇ ×�

)
(11)

Substituting Equation (11) into Equation (10) and using the divergence theorem yields a
boundary-integral equation for H as

�H +
1
2�

∫
B
H
@ ln(1=R)
@n

dS =
1
2�

∫
B

@u
@t

· n ln(1=R) dS − 1
2�

∫
B
�
R · (n×�)

R2
dS

− 1
2�

∫
V

R · (u×�)
R2

dV (12)

where � is �=1 inside the �ow �eld and �= 1
2 on the boundary B. When the surface pressure

is computed according to Equation (12), the left-hand side of the equation represents a matrix
formulation which must be decomposed on the �rst time when there is no relative movement
among the �ow boundaries. The right-hand side accounts for the motion of the bodies and
the volume vorticity in the �ow �eld.
The integral representations (9) and (12) permit the explicit, point to point, computation

of the new velocity and pressure distribution, and only the non-zero vorticity region needs to
be solved. It is easy to check if the integral formula would incur a heavy computation cost; a
calculation of O(N 2� ) interaction is necessary for N� control volumes with non-zero vorticity.
However, note from Equations (9) and (12) that both the velocity and pressure induced by
a control volume drop o� as the inverse of distance in the far �eld motivates methods to
approximate (9) and (12) by grouping the in�uence of distant vortex volumes to reduce
computational cost. These approximations are crucial in making the integral computations of
challenging problems practically feasible.
By assuming that the vorticity has a uniform distribution within each control volume, the

velocity at a point rj induced by vorticity distribution in the �ow domain, in particular at the
vertexes of each control volume is given by

uj(rj; t)=
1
2�

N�∑
i=1

!i(t)k× (rj − ri)
|rj − ri|2 dVi (13)

In this study, an approach by Barnes and Hut [22] has been modi�ed to reduce the com-
putational cost to O(N� logN�) by grouping the in�uence of distant computational elements
and utilizing a Laurent expansion in (13). In this analysis, the point vortex representation is
assumed for the vorticity volume. This is a reasonable assumption since the e�ect of volume
shape becomes negligible for distant elements. Consider a complex variable representation of
(13) for a group of point vortices given by

u(Z)=
i
2�

M∑
n=1

�n
Z − Zn (14)
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Figure 1. Hierarchical zone structure.

in which, a point vortex at the centre, rn, of a control volume �n of area A�n with the strength
of �n=!nA�n . Introduce a new location Zm that will serve as a point about which to expand
the in�uence of groups of far �eld particles

u(Z) =
i
2�

1
Z − Zm

p∑
k=0

�k
(Z − Zm)k +O

(∣∣∣∣Zm − Zn
Z − Zm

∣∣∣∣
p+1
)

(15)

where �k =
∑M

n=1 �n(Zm − Zn)k , and |z − zm| � |zn − zm|. In actual calculation, the distance
between z and zm is greater than some factor times the radius � of the zone [22].
The summation over M particle can be thus reduced to a summation over P + 1 terms

involving coe�cients �k that can be precomputed and perused for each summation over the
group of particles. The error term de�nes the need for the particle group to reside in the far
�eld of the point Z.
Similar formula transformation can also be done for the term (1=2�)

∫
V [R · (u×�)]=R2 in

the pressure integral equation. An entire hierarchy of grouping has been developed with a
quad-tree structure to allow for maximal use of the above approximations. An hierarchical
example is provided in Figure 1. The whole �ow domain containing non-zero vorticity is
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initially contained in a single square zone. This is then divided into four subzones. Each zone
is then further subdivided into four new zones, provided that there is a minimum number of
particles in the zero, thus creating a hierarchical structure of zones. For each zone, the parent
zone and any children of the zero are recorded, along with which particles are stored in that
zone.

4. SOLUTION OF VORTICITY TRANSPORT EQUATION

Since vorticity is a conserved quantity in two dimensions, �nite volume method is an appro-
priate scheme for vorticity transport equation. Using the cell-centred �nite volume method,
for each control volume (i; j), see Figure 2, the vorticity transport equation (3) can be written
in the integral form as

@
@t

∫
Vc
! dV +

∫
Sc
(u · n)! dS= �

∫
Sc

∇! · n (16)

where n is the unit normal vector of the control surface Sc and for simplicity, the orthogonal
grids have been used to discretize the �ow domain, and �� and �� are the measures of edges.
For di�usive �uxes, a simple linear interpolation can be used for calculating the gradient for
an orthogonal co-ordinate system which is the case of the present study. If more general cases
with non-orthogonal co-ordinate system are involved, the method involving the transformation
of the derivative into a surface integral using the Gauss theorem can be employed.
The main challenge in solving Equation (16) is to impose the no-slip boundary condition.

It is clear that it is possible to derive proper velocity boundary conditions for the Navier–
Stokes equations. In primitive variable (u–p) formulation of the Navier–Stokes equations, the
no-slip boundary condition is explicitly enforced. The no-slip condition physically means the
creation of vorticity at the boundary. In vorticity–velocity formulations, vorticity conditions are
required for formulating and quantifying this vorticity creation process. In general, involving
the vorticity creation on the boundary, two di�erent schemes are usually referred, one is
the boundary value of vorticity (Dirichlet-type boundary condition) the other is the wall-
normal vorticity �ux (Neumann-type boundary condition). The Neumann form of the boundary
condition is, in general, preferred. For Neumann-type vorticity condition, the task is to derive
the vorticity �ux at the boundary. In this section, we implement the boundary conditions in
a fractional step algorithm, which formulates the problem as a succession of inviscid and
viscous subjects. The convection and di�usion are combined using a standard fractional step
approach.

4.1. The convection equation

Let us assume that in the nth time step an admissible vorticity �eld has been computed and
we seek to advance the solution of the next step. For the convective operator, we solve

@
@t

∫
Vc
! dV +

∫
Sc
(u · n)! dS=0 (17)
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Figure 2. Schematic of orthogonal control volume.

The second-order Adams–Bathforth method has been used to advance the solution in the time
domain.
Let Di−1=2; j and Ei; j−1=2 represent the convection �ux at the left edge and bottom edge for

cell (i; j) shown in Figure 2. The convective �ux-term for each of the cell faces in (17) is
easily computed

Di−1=2; j =
ui−1=2; j−1=2 + ui−1=2; j+1=2

2
· ni−1=2; j!i; j (18)

Ei; j−1=2 =
ui−1=2; j−1=2 + ui+1=2; j−1=2

2
· ni; j−1=2!i; j (19)

Note that the convective velocity (u · n) (assumed to be positive) convects vorticity assigned
to the upwind node. If (u · n) turns to be negative, then the vorticity is assigned the value
!i−1; j in (18), !i; j−1 in (19).
After the vorticity has been convected but without properly taking into account the produc-

tion and transport at the boundary, Equation (9) is no longer generally satis�ed. As proposed
by Lighthill [23], we represent the circulation associated with the newly created vorticity by
a vortex sheet to reestablish kinematic compatibility. Conveniently enough, the boundary in-
tegrals in Equation (9) represent the notion induced by vortex sheets and source sheets with
strength 	 and 
, respectively, given by

	= − n× u; 
= − n · u (20)
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A convenient method of the solving the vortex sheet is to solve the integral equation on
the condition 
=0, i.e. satisfying the no-�ux boundary condition

1
2�

∫
B

	(r0)×R
R2

dB(r0)= − 1
2�

∫
V

!(r0)×R
R2

dV (r0)−U∞ (21)

We obtain a unique solution for this equation by adding a constraint on the strength of the
vortex sheet. Similarly, to get Equation (11), we can derive a relation for the tangential
derivative of H in the solid boundary B

@H
@�
=
@	
@t
+ �

@!
@n

(22)

For physical reasons we shall impose that H be continuous over the solid. By integration,
Equation (22) leads to

d
dt

∫
B
	 ds+ �

∫
B

@!
@n
=0 (23)

On the other hand, after some simple transformations, integration of the vorticity transport
Equation (3) over the domain V gives

d
dt

∫
V
! dV = �

∫
B

@!
@n
dB (24)

This shows that when there is no convection �ux through the domain boundary, the only way
that vorticity can enter is by di�usion from the solid surface. From Equations (23) and (24),
via integration in time, we obtain∫

V
! dV +

∫
B
	 dB = const (25)

The solution of Equation (21) yields the vortex sheet strength 	, representing the creation
of vorticity during a given time step. We may think of the vortex sheet 	 as part of the
interior vorticity. On the �uid side of the sheet, the tangential velocity is determined from
the vorticity within the domain and the velocity boundary condition, while on the no�uid
side, the velocity is speci�ed by the boundary condition. Across the vortex sheet, there is a
jump in tangential velocity equal to the strength of the sheet. The e�ects of the di�usion step
described in following are in particular immediate regularization of the discontinuous velocity
pro�le, establishing a proper boundary layer.

4.2. The di�usion equation

For the di�usion, we wish to solve numerically

@
@t

∫
Vc
! dV = �

∫
Sc

∇! · n dS (26)

This equation shows that the vorticity for each cell is updated in each time step by approxi-
mations to the �ux through each edge of cell. Let Fi−1=2; j and Gi; j−1=2 represent the di�usion
�ux at left edge and bottom edge shown in Figure 1. We approximate quantities Fi−1=2; j and
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Gi; j−1=2 on orthogonal cell edges by di�erencing across the edges and use these to approximate
the di�usion �uxes as

Fi−1=2; j =−�!i; j −!i−1; j
�i; j − �i−1; j (27)

Gi; j−1=2 =−�!i; j −!i; j−1
�i; j − �i−1; j (28)

To discretize the di�usion equation (26), we use a standard Crank–Nicolson method at all
grid points. We de�ne an approximation to the integral �

∫
S ∇! · n dS in Equation (26) as

Wn
ij = − [��(Fni+1=2; j − Fni−1=2; j) +��(Gni; j+1=2 −Gni; j−1=2)] (29)

Then an implicit discretization of Equation (26) is given by

����
wn+1ij −!nij

�t
=
1
2
(Wn

ij +W
n+1
ij ) (30)

We use the Peaceman–Rachford ADI scheme to solve this equation. Thus the resulting sys-
tem of equations are tridiagonal. To close the equations, we need to know vorticity �ux
(@!=@n)B on the solid boundary. Similar with Kinney and Paolino [11], and Koumoutsakos
et al. [20], we envision the vortex sheet as equivalent to the vorticity �ux. The vorticity
�ux helps establish a vorticity �eld that eliminates the spurious tangential velocity while
simultaneously enforcing the no-�ux boundary condition. Here we should notice that the vor-
ticity �ux �(@!=@n)B is coupled globally to vorticity distribution in �ow domain according to
Equations (8) and (25). We introduce an iterative scheme to solve this coupled system [24].
Let 
= �(@!=@n)|B, we may obtain a �rst-order formulation for 
 from Equation (25) as


= − 	
�t

∣∣∣
B
=
u�
�t

∣∣∣
B

(31)

An iterative scheme can be naturally derived from (31). For nth time step, after convection,
the spurious tangential velocity un+1=2� occur on the solid boundary, therefore


=
un+1=2�

�t

∣∣∣∣∣
B

(32)

For a fully decoupled scheme, Equation (32) is the boundary condition to use. After the
di�usion, un+1� in general not zero, un+1� �=0. Therefore, utilizing (32) to determine the vorticity
�ux from the solid boundary introduces some error into the solution and the no-slip condition
is not strictly satis�ed. Although the error is generally not large, as an unknown factor, it is
undesirable for designing highly accurate numerical schemes. Thus, we introduce an iterative
method to control the slip to a desired small level. In this iterative scheme, an update vorticity
�ux is used as


m+1 =
m +
un+1; m�

�t
(33)

where m is the number of iterative times. Clearly, (33) converges as the no-slip condition
is achieved. Note that during iteration only the slip velocity needs to be computed. This
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feature makes (33) �t well in this integral method that solves velocity via the generalized
Biot–Savart integration, because the slip velocity can be obtained without solving the whole
velocity �eld.

4.3. Fractional step methods for the vorticity transport equation

In the previous two Sections 4.1 and 4.2, we have described in detail our algorithms for
handling the convection and di�usion terms separately. These can be combined using stan-
dard fractional step methods in order to solve the coupled convection–di�usion equation. The
advantage of using a fractional step approach is that we can treat the vorticity convection,
creation and di�usion separately.
In the fractional step approach, both the �rst-order scheme (Godunov splitting) and the

second-order scheme were considered,

!(n�t) = (E(�t)H (�t))n!0 (Godunov splitting) (34)

!(n�t) = (E(�t=2)H (�t)E(�t=2))n!0 (Strang splitting) (35)

where E(�t) is the convection operator and H (�t) is the di�usion operator. In the Strang
splitting, the half time step of convection is followed immediately (in the next step) by
another half time step using the same operator. These two half steps can be combined into
a single step of length �t and in fact it is better to do so to reduce numerical di�usion
and computational cost. Once this is done, the Strang splitting (35) over many time steps is
identical to the Godunov splitting (34) except in the �rst step only at the beginning. For this
reason, we use the simpler Godunov splitting, so the semi-discrete equations that we solve
have the basic form

!∗ −!n
�t

=−(u · ∇)!n (36)

!n+1 −!∗

�t
= �∇2

(
!∗ +!n+1

2

)
(37)

In this method, as expressed in (36) and (37), the convection and di�usion are performed in
turns and the di�usion scheme is unconditionally stable.

5. NUMERICAL RESULTS

In this section, we demonstrate the performance of our proposed algorithm through the nu-
merical examples. One computational cycle of the present algorithm as it applies to �ow
simulations consists of the following steps. We assume that uni and !ni are known for N
vortex cells covering the �ow domain at time n�t:

(1) Solve the convection equation (17) with n · u= 0 on the solid boundary, satisfying the
no-�ux boundary condition.
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(2) Use Equation (21) to determine the strengths of vorticity sheets on the boundary.
(3) Solve Equation (30) with Neumann boundary condition. Use an iterative scheme to

assure the slip velocity within an acceptable minimum value.
(4) Calculate the velocity at the vertexes of vortex cells at (n + 1)th time step using

formulation (9) combined with (15).
(5) If necessary, calculate pressure distribution with Equation (12).
(6) Repeat to step 1.

Two calculated examples are given in the following in order to show the accuracy and
e�ciency of the proposed method. The �rst example is the simulation of Blasius boundary
layer. The Blasius boundary was computed by time marching to a steady state after impulsively
moving the �uid in an initially zero vorticity �uid. The second example is the �ow around
the impulsively started circular cylinder. This �ow problem has been extensively used as a
prototype of unsteady separated �ows and a number of numerical and experimental results
are available for validating new numerical methods.

5.1. The Blasius boundary layer

We calculated the Blasius boundary layer by impulsively moving the �uid around the �at plate.
For this boundary layer �ow, lengths are assumed to be scaled by a streamwise length of the
plate, L, and velocities by the free stream velocity, U∞. The Reynolds number Re=U∞L=�,
and calculations are performed in non-dimensional �ow domain 06x6x∗; 06y6y∗. x∗ is
decided to assure the existence of contributions from vorticity lying beyond �at plane length.
y∗ is chosen to be large enough to contain the complete lateral boundary layer growth through
�at plane length. We calculated the Blasius boundary for Re=10000, therefore, we selected
x∗=5:0 and y∗=0:1.
To examine the performance (timing, accuracy, etc.) of the fast summation algorithm,

calculations using both the direct summation and fast algorithm are performed. A simple
uniform grid is utilized for the calculation and the grid points used are 200× 50. The width
and height of the cells are assigned common constant values of �x and �y, respectively, as
shown in Figure 3. The time step adopted for the calculation is �t=0:005 and 2000 steps
have been advanced. By the last step (t=10), the number of active cell, i.e. the cells with
a vorticity value not less than a speci�ed value !=10−6, is about 7800, and the CPU time
used for the direct calculation is nearly four times of the fast algorithm. The number of the
terms used for calculating the Laurent series expansion is Nt =12. The results of vorticity
from both calculations are shown in Figure 4 for the points of x=0:25, 0.5 and 0.75 on
the �at plate surface. No noticeable discrepancy occurs, which indicates the high accuracy

xD
yD

Figure 3. Schematic of vortex volume for boundary layer calculation.
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Figure 4. Accuracy of fast algorithm: vorticity for three di�erent points at the �at plate
A(0:25; 0:0); B(0:50; 0:0) and C(0:75; 0:0) (Grid: 200× 50; dt=0:005).
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Figure 5. E�ects of grid density and time step on the slip: (a) E�ects of time step (Grid: 200× 50):
and (b) e�ects of grid density (dt=0:005).

of the fast algorithm. No examination has been made to optimize the fast algorithm during
the calculation because we want to keep the same accuracy of the fast algorithm with the
direct calculation. In the following discussion, all the results are obtained by using the fast
summation algorithm.
In order to evaluate the in�uence of the grid density and time step on the solution, grid den-

sity 100× 25, 200× 50 and 300× 75 for di�erent non-dimensional time step �t=0:001; 0:005
and 0.01 have been used for the calculation. The time variation of the maximum slip with-
out iteration is shown in Figure 5. Figure 5(a) shows the results for di�erent time steps
�t=0:001; 0:005 and 0.01 with grid density 200× 50, and Figure 5(b) shows the results for
di�erent grid density 100× 25, 200× 50 and 300× 75 with a �xed time step �t=0:005. It
clearly indicates that residual slip after the di�usion substep is proportional to �t, and the
magnitude of the slip has little dependence on the grid size. Figure 5 also shows that the
local and decoupled formula (31) is well applicable for the �ow without iteration.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:607–629



620 B. ZHU

0 2 4 6 8 10
-250

-200

-150

-100

-50

0

t

ω
A CB

 No iteration
 Iteration

Figure 6. E�ects of iteration: vorticity for the same three points A, B and C in Figure 4.
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Figure 7. Vorticity variation with time for the same three points A, B and C in Figure 4: (a) Di�erent
grid density (Time step: dt=0:005); and (b) di�erent time step (Grid: 200× 50).

As described in Section 4.2, we implemented the iterative scheme so that the slip could be
further reduced and the global coupling was better satis�ed. In the calculation, the maximum
slip was reduced to below 10−5 and about two or three iterations were needed for convergence.
The result (Figure 6) is almost identical with the non-iterative one. We want to point out that
!B is the space-integrated e�ect of 
 and the slip does not directly relate to the accuracy of
!B, although vorticity is created by no-slip condition.
Figure 7 shows the results of vorticity for the points at x=0:25; 0:5 and 0.75 on the

�at plate surface with grid density 100× 25; 200× 50 and 300× 75 for di�erent time steps
�t=0:001; 0:005 and 0.01. Figure 7(a) shows the results with grid density 100× 25; 200× 50
and 300× 75, and a �xed non-dimensional time step �t=0:005. Figure 7(b) shows the re-
sults for di�erent time step �t=0:001; 0:005 and 0.01 with grid density 200× 50. The grid
resolution study shows that the two �nest grids produce nearly the same results. It is also
found that the in�uence of �t turns out to be small. It seems that the time accuracy is not
crucial in the present early-stage computation. In summary, Figure 7 shows that the steady
state can be achieved after t ≈ 4:0 by impulsively moving the �uid around the �at plate.
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Figure 8. Velocity and vorticity predictions in the cross �ow sections: x=0:25; 0:50 and 0.75
(dt=0:005): (a) Streamwise velocity u; (b) cross velocity v; and (c) vorticity !.

The solution was compared with Blasius solution. The velocity and vorticity on the cross
sections through the boundary layer at x=0:25; 0:5 and 0.75 are shown in Figure 8. The
streamwise velocity agrees well with the Blasius pro�le. It is di�cult to accurately predict
the cross�ow velocity v due to its very small magnitude. Although the relative errors are
somewhat greater than that in the case of streamwise velocity u, the predictions of cross�ow
v are well credible. Figure 8(c) shows the prediction of vorticity, and vorticity ! is closely
predicted including the zone near the plate wall.
The velocity and vorticity at streamwise sections y=0:005; 0:01 and 0:02 are shown in

Figure 9. Similar as on the cross-sections, both the velocity and vorticity are well predicted and
agree well with the Blasius pro�le. Near the leading edge, the variation of cross�ow velocity v
and vorticity ! is signi�cant. It should be pointed that the Blasius similarity solution predicts
that v and ! are singular at x=0. However, according to Figure 9, the numerical solution
does not mimic the singularity in the Blasius solution. With re�ned resolution, the prediction
of cross�ow velocity v is somewhat improved, which means that the singular behaviour of the
leading edge �ows is partly responsible for the disparities in cross�ow velocity and vorticity
prediction.
Figure 10 shows the wall vorticity distribution along the �at plate. Wall vorticity distribution

is well predicted and agrees well with the Blasius solution except at the leading edge. As
mentioned before, vorticity ! is singular at leading edge x=0. For bounded �ow problems,
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Figure 9. Velocity and vorticity predictions in the streamwise sections: y=0:005; 0:01, and 0.02
(dt=0:005): (a) Streamwise velocity u; (b) cross�ow velocity v; and (c) vorticity !.
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Figure 11. Time variation of maximum slip velocities for a circular
cylinder: Re=3000 (grid: 300× 200).
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Figure 12. Surface vorticity distribution: Re=3000 (grid: 300× 200; dt=0:005).

there are no boundary conditions on the vorticity, but the value of the vorticity on the boundary
does play a major role in most vorticity-based methods. Although �ow around a �at plate is
one of the simplest bounded �ows, the previous results show that the present schemes are
suited to compute the vorticity which is a challenging variable in vorticity-based methods.

5.2. Flow around impulsively started circular cylinders

To show the accuracy and e�ciency of the proposed method, calculations are also performed
for �ows around an impulsively started circular cylinder at Re=UD=�=3000; 9500, where
U; D and � denote a uniform velocity, a diameter of the circular cylinder and the kinematic
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Figure 13. Instantaneous equi-vorticity contours: Re=3000 (grid: 300 × 200; dt=0:005): (a) t=1:0;
(b) t=2:0; (c) t=3:0; (d) t=4:0; (e) t=5:0; and (f) t=6:0.

viscosity, respectively. For both the Reynolds number, series of new separation phenomena
appear which make them particularly challenging for various numerical schemes [17, 25, 26].
For Re=3000, at �rst 300× 200 grid was used with a minimum grid size in the normal

direction to the surface �r=0:01 and the time step �t=0:001; 0:005. The time variation
of the maximum with no-iteration is shown in Figure 11. It is interesting to note that after
keeping at a constant level for some time, the slip rises. The time of slip rising is about the
time when the �rst secondary vortex starts to form as shown in Figure 12. Owing to small
vortices rather than the primary large vortex, the boundary vorticity no longer varies smoothly
along the surface and a large gradient occurs. The small vortices can also be seen clearly in
Figure 13. Comparing Figure 11 with Figure 12 shows that when t=2:0, there are high peaks
in the !B distribution, so that not only !B but also its gradient is large. Correspondingly, the
slip is large, about the maximum point in the curve.
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Figure 14. Surface vorticity distribution for di�erent grid density: Re=3000:
(a) t = 3:0; and (b) t = 4:0.
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Figure 15. Surface pressure distribution for di�erent grid density: Re=3000: (a) t=3:0; and (b) t=4:0.

We also implemented the iterative scheme so that the slip could be further reduced and
the global coupling was satis�ed better. In the calculation, the maximum slip was reduced to
below 10−5 and �ve to eight iterations were needed for convergence. The fast convergence
of the iterative schemes is mainly because of the weak coupling of vorticity with pressure.
The result (Figure 12) is almost identical with the non-iterative one.
As shown in Figure 12, there is a high peak in !B, the normal gradient near the wall is

likely to be very high. Thus reducing �r near the wall will give a better solution. Results of
a higher grid resolution 450× 300 with �r=0:005 and a coarser grid resolution 150× 100
with �r=0:02 are also presented. Figure 14 shows the vorticity distribution at the body
surface for t=3:0 and 4:0 for di�erent grid densities. Comparing with coarser grid density
150× 100, the improvement in the peak values of boundary vorticity !B is obvious. Figure 15
shows the pressure distribution on the boundary surface corresponding to Figure 14. In pressure
distribution, a little di�erence occurs at the positions with peak values of !B between the �ner
grid densities 450× 300, 300× 200 and the coarser grid density 150× 100. The improvement

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:607–629



626 B. ZHU

Figure 16. Instantaneous equi-vorticity contours: Re=9500: (a) t=1:0; (b) t=2:0; and (c) t=3:0.
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Figure 17. Surface vorticity distribution: Re=9500.

in pressure distribution is less than that in vorticity distribution for �ner grids. This also shows
that if the vorticity has certain accuracy, the pressure will be very accurate because of its one
order higher accuracy than vorticity’s.
As Reynolds number Re increases from 3000 to 9500, the �ow exhibits a much richer

vortex structure, which makes the computation more di�cult [18]. In the following results,
a 600× 300 grid was used with a minimum grid size in the normal direction to the surface
�r=0:005 and the time step �t=0:002. It should be pointed out that although large grid
points were embedded in the �ow domain, the number of actually active vortex cells used in
the calculation was around 35 000 by the end of the calculation t=3:0.
Figure 16 shows the equi-vorticity around the cylinder and Figures 17 and 18 show the

vorticity distribution and pressure distribution on the cylinder surface for t=1:0; 2:0, and 3:0,
respectively. The present calculation accurately resolved the near wall vorticity for this high
Reynolds number Re, therefore, the formulation and eruption of the secondary vorticity are
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Figure 18. Surface pressure distribution: Re=9500.
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Figure 19. Comparison of drag coe�cients: Re=9500.

captured. The mechanism of unsteady separation and the interaction between vortical structures
and solid boundary were reviewed by Doligaski et al. [27]. In Figure 19, the Cd values are
compared with other calculated results [17, 25, 26], which show a very good agreement among
the results from di�erent methods. For the same time t, 350 000 discrete vortex elements have
been used in the study of Koumoutsakos and Leonard [17] and 2044× 254 grid points was
used by Anderson and Reider [26]. Therefore, for high Reynolds numbers, a highly accurate
solution can be obtained without using excessively large number of control vortex cells by
using the �nite volume method.
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6. CONCLUSIONS

In this paper, we have presented a new method based on the vorticity formulation for the
incompressible unsteady viscous �ow. In this method, both the velocity and pressure are solved
in integral formulations concerning the vorticity. The integral formulations are obtained from
two Poisson equations for the velocity and pressure, respectively. The integral forms make the
calculation necessary only for the �ow �eld with no negligible vorticity and the fast summation
algorithm makes the integral forms practically feasible in computing complex problems. The
integral formulation for the velocity also connects vorticity boundary conditions with the
instantaneous vorticity and velocity distribution in the �ow domain and makes it easy to deal
with the global vorticity constraints for vorticity boundary condition.
The �nite volume method has been used to solve the vorticity transport equation. Inherent

conservative property of the �nite volume method guarantees the conservation of vorticity
in the entire �ow domain. The convection and di�usion of the vorticity are solved with an
explicit second-order approach and an implicit Crank–Nicolson approach, respectively, and
they are combined with a standard fractional step method. The scheme is simple and accurate
in dealing with the vorticity boundary condition in Neumann-type. In order to accurately
calculate the vorticity �ux, an iterative scheme has been introduced in solving the vorticity
di�usion equation.
We have demonstrated the performance of our proposed algorithm through the numerical

examples. The Blasius boundary layer has been computed by time marching to a steady state
after �rst impulsively moving the �uid in an initially zero vorticity �eld and the calculated
results have excellent agreements with the Blasius similarity solution. Early stage development
of �ow around an impulsively started circular cylinder at two high Reynolds numbers has also
been studied and compared with other numerical results. A higher accurate solution has been
obtained without using excessively large number of grid points.
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